도와 주세요 못풀겠어요ㅠㅠ
작성자 l 남주형 [njh960] 등록일 l 11-04-07 23:07 조회 l 283
1번부터 2000번 까지의 2000명의 사람과 1호 부터 2000호까지의 2000개의 닫혀있는 창문이 있다. 1번은 모든 창문을, 2번은 짝수 번호의 창문만을 열거나 닫게 되고, n번의 사람이 n의 배수인 번호가 붙은 창문만을 열린 것은 닫고 닫힌 것은 열도록 한다. 2000명이 모두 이렇게 한 후에 열린 상태의 창문은 몇개이겠는가?

풀이 과정 써 주시면 감사하겠습니다.
참고로 숙제 아닙니다
게시글을 facebook으로 보내기 게시글을 twitter로 보내기
이현도 [hotsword27] 11-04-07 23:59
 
  n번 창문을 건드리는 사람은 1번과 n번, 그리고 n의 약수에 해당하는 사람입니다.
짝수번 열렸다 닫힌다면 결과적으로 닫히는 것이며
홀수번 열렸다 닫힌다면 결과적으로 열리는 것이겠죠?

결국 창문이 열린 상태가 되려면 약수가 홀수개 있어야 하는데,
대부분의 경우, 약수는 짝이 있어요.
n = a*b 라면 n의 약수가 a와 b라는 짝으로 나오니까요.
이렇게 짝으로 나오지않는 경우는 n = c² 형태로 제곱형태로 나오는 경우 뿐이겠죠.
예를 들자면 16의 경우 1,2,4,8,16으로 제곱형태로 나오는 '4'를 제외하면 전부 짝이 있고, 4때문에 홀수번이 되는거겠죠.

결국 문제를 다시 정리하면 2000까지의 숫자 중에 제곱수는 몇개인가? 는 질문이고
44² < 2000 < 45² 이므로 2000까지의 숫자 중에 제곱수는 44개이며,
열린 상태의 창문도 44개임을 알 수 있습니다.
남주형 [njh960] 11-04-08 07:14
 
  이해하기 쉬웠어요

정말 감사합니다
이승환 [god2180] 11-04-11 21:36
 
  흐음... 그런가..........  n의 배수를 여는거니까... 흐음..... 그런가....... 열려있는게 흐음....... 세면 너무 많겠군 이런...... 아 그렇군 약수가 홀수개면 되는구만  그렇네요! 오호
목록
번호 제목 작성자 날짜 조회
12011 어느 사이트에서 논란이 되고있는 문제 48÷2(9+3)=?? (33) 주경준 11-04-10 352
12010 해독하시오 (10) 김현수 11-04-10 236
12009 끝말잇기입니다 (132) 김현수 11-04-10 297
12008 문득 든 생각입니다 (13) 김동률 11-04-09 250
12007 추리문제2 (10) 김현수 11-04-08 361
12006 추리문제입니다 (8) 김현수 11-04-08 307
12005 도와 주세요 못풀겠어요ㅠㅠ (3) 남주형 11-04-07 284
12004 초등 3학년 수학문제 입니다 (3) park hoseong 11-04-07 350
12003 재미있는 도형추리.. (5) 한경진 11-04-05 463
12002 fsf (2) 김동률 11-04-05 139
12001 서로 동시에 전화를 걸 확률 ? (5) 박진우 11-04-03 315
12000 다음 ? 표에 알맞은 수를 넣으시오. (5) 최세민 11-04-02 225
11999 이것 좀 풀어주세요 (10) 남주형 11-04-01 301
11998 증명 문제 (7) 그림파일첨부 권상혁 11-04-01 295
11997 8 = ? (13) 이재우 11-03-31 353
   31  32  33  34  35  36  37  38  39  40    

대표자 : 송필재
사업자번호 : 617-82-77792
06777  서울특별시 강남구 봉은사로 125 스파크플러스 B207 (논현동, 리스트빌딩)       TEL 02_6341_3177       FAX 02_3445_3177
copyright 2021    Mensa Korea.      All Rights Reserved.